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ABSTRACT: We estimated global fine particulate matter
(PM2.5) concentrations using information from satellite-,
simulation- and monitor-based sources by applying a Geo-
graphically Weighted Regression (GWR) to global geophysi-
cally based satellite-derived PM2.5 estimates. Aerosol optical
depth from multiple satellite products (MISR, MODIS Dark
Target, MODIS and SeaWiFS Deep Blue, and MODIS
MAIAC) was combined with simulation (GEOS-Chem)
based upon their relative uncertainties as determined using
ground-based sun photometer (AERONET) observations for
1998−2014. The GWR predictors included simulated aerosol
composition and land use information. The resultant PM2.5
estimates were highly consistent (R2 = 0.81) with out-of-
sample cross-validated PM2.5 concentrations from monitors. The global population-weighted annual average PM2.5
concentrations were 3-fold higher than the 10 μg/m3 WHO guideline, driven by exposures in Asian and African regions.
Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both
sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the
addition of even sparse ground-based measurements to more globally continuous PM2.5 data sources can yield valuable
improvements to PM2.5 characterization on a global scale.

1. INTRODUCTION

Ambient fine particulate matter (PM2.5) concentrations
contribute significantly to global disease burden, causing
3 million premature deaths in 2013.1 Satellite observations,
simulations, and ground monitors provide insight into global
PM2.5 exposure, but availability and quality of these data sources
vary regionally. Exposure assignments, such as for the Global
Burden of Disease2 (GBD), would benefit from more
sophisticated methods to combine these sources into a unified
best-estimate. Geophysical relationships between aerosol
optical depth (AOD) and PM2.5 simulated using chemical
transport models (CTM) have allowed surface PM2.5 to be
globally estimated from satellite AOD observations,3 but
underutilize the insight that ground-based monitors can
provide. Statistical methods, such as Land Use Regression

and Geographically Weighted Regression (GWR), have been
effective at combining the spatial coverage of satellite
observations with the accuracy of ground-based monitors
where monitor density is high, such as in North America,4

China,5 and Europe.6 The global paucity of ground-based
monitors has traditionally restricted application of these
methods on a larger scale.
Major advances in satellite remote sensing include new

retrieval algorithms with high accuracy, long-term stability,
and high resolution.7−13 The ground-based AERONET sun
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photometer network14 offers long-term globally distributed
AOD measurements that provide insight into the relative skill
of these retrieval algorithms. A method has been demonstrated
of combining geophysical satellite-derived PM2.5 estimates with
GWR over North America to draw on the strengths of all three
PM2.5 information sources; this approach retained consistent
agreement (R2 = 0.78) at cross-validation sites even when 70%
of sites were withheld, suggesting this approach might be
extended to regions with only sparse PM2.5 monitoring.15

Here we present and evaluate a global framework based on
that combined approach. We evaluate the retrieved and
simulated total column AOD from numerous sources using
AERONET to produce a globally continuous AOD field based
on the relative uncertainty of each source. We relate AOD to
PM2.5 geophysically, using their simulated relationship in
combination with the CALIOP space-borne lidar.16 Globally
distributed, ground-based monitors are used to predict and
account for the residual bias in the combined PM2.5 estimates
through GWR, and the results are tested for independence.
This work represents a step forward in both understanding
sources of bias associated with satellite-derived PM2.5 estimates,
as well as a major improvement in characterization of global
PM2.5 concentrations.

2. SOURCES OF INFORMATION: INSTRUMENTATION,
RETRIEVAL ALGORITHMS, AND SIMULATION
Passive Satellite Instruments. We used AOD retrieved

from four “passive” satellite instruments that observe back-
scattered solar radiation.
Twin MODerate resolution Imaging Spectroradiometer

(MODIS) instruments reside onboard the polar-orbiting
Terra and Aqua satellites, launched in 2000 and 2002,
respectively. With a broad swath width of 2330 km, each
instrument provides near-global daily coverage at 36 spectral
bands between 0.412 and 14.5 μm with a nadir spatial reso-
lution of 250 m to 1 km, depending on spectral channel. The
MODIS Collection 6 release improves the calibration to correct
for sensor degradation, allowing more consistent retrievals
throughout their lifetime to date.17

The Multiangle Imaging SpectroRadiometer (MISR) instru-
ment, also onboard the Terra satellite, provides nine views of
each 275 m to 1.1 km nadir resolution pixel, at angles ranging
from nadir to 70.5° fore and aft in four spectral bands between
0.446 and 0.866 μm. The MISR instrument swath width of
∼380 km takes about a week for complete global coverage at
midlatitudes, and has demonstrated spectral stability through-
out its lifetime.18,19

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
instrument was operational from 1997 to 2010. SeaWiFS’
1500 km swath provided near-daily global observation in
8 spectral bands between 0.402 and 0.885 μm with a nadir
spatial resolution of 1.1 km. The radiometric calibration of
SeaWiFS was stable over its lifetime.20

Passive Retrieval Algorithms. Several AOD retrieval
algorithms have been developed from top-of-atmosphere
reflectances observed by these instruments over various sur-
faces. Individual algorithms can excel under certain conditions,
or alternatively provide similar quality under others.21,22

The Collection 6 Dark Target (DT) retrieval algorithm over
land7 relates surface reflectances observed at near-infrared
wavelengths, where aerosol scattering effects are reduced,
to visible wavelengths using NDVI-based relationships to
represent underlying vegetation and other surface types.8

Observed top-of-atmosphere reflectances over dark surfaces
are corrected for absorption by atmospheric gases and related
to AOD, accounting for the effects of aerosol and molecular
scattering. We used 10 km resolution DT applied to MODIS
instruments.
The Deep Blue (DB) algorithm was initially developed for

MODIS AOD retrieval over bright surfaces, such as deserts.10

DB utilizes blue wavelengths, where reduced surface reflectance
allows greater sensitivity to AOD. DB has been enhanced since
its inception to include polarization effects, dynamic and
geolocated surface reflectance, and extended to “dark” land
surfaces.9 DB is applied to SeaWiFS23 at 13.5 km resolution
and to MODIS at 10 km resolution.
The Multi-Angle Implementation of Atmospheric Correction

(MAIAC) retrieval algorithm uses time series analysis and
image processing to derive the surface bidirectional reflectance
function at fine spatial resolution.11,12 Multiple, single-view
passes are combined over up to 16 days to exploit multiangle
viewing effects. MAIAC uses empirically tuned, regionally
prescribed, aerosol properties following the AERONET
climatology, and provides AOD at 1 km spatial resolution
over land globally from MODIS. MAIAC was not globally
available at the time of this work, but will be in the future.
The MISR retrieval algorithm (v22)24 uses same-scene

multiangular views to simultaneously solve for surface and
atmospheric top-of-atmosphere reflectance contributions,
providing AOD retrievals over land without absolute surface
reflectance assumption. MISR retrieves over both dark and
bright surfaces. MISR retrievals use multiple aerosol models
with different refractive index, particle size and shape
(nonsphericity), allowing for retrieval of aerosol size and type
in many conditions.13 MISR retrievals are applied to the MISR
instrument at 17.6 km resolution.

CALIOP Satellite Instrument. The “active” Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP) instrument has
provided global vertical aerosol profiles from the Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)
satellite since 2006.16 CALIOP observes the backscattered
radiation from laser pulses it emits at 532 and 1064 nm. Aerosol
extinction profiles (v3.01) are retrieved at a resolution of 30 m
vertical up to 8 km above the surface, and 5 km horizontal.

GEOS-Chem Chemical Transport Model. We used the
GEOS-Chem chemical transport model (http://geos-chem.org;
v9−01−03) as an additional data source for AOD, and to
simulate the spatiotemporally varying geophysical relationship
between AOD and PM2.5. Assimilated meteorology from the
NASA Goddard Earth Observation System (GEOS) drives the
simulations for 2004−2012 (GEOS-5.2) and 1998−2014
(GEOS5.7). Nested GEOS-Chem simulations for North
America,25,26 Europe27 and East Asia28 used GEOS-5.2 at
0.5° × 0.67° and 47 vertical levels. Our global simulations
at 2° × 2.5° used GEOS-5.2 when available and otherwise
GEOS-5.7. The use of GEOS-5.2 allowed for higher resolu-
tion within the nested regions. Each aerosol type simulated
with GEOS-5.7 was scaled by its mean monthly ratio with
the GEOS-5.2 driven simulation based on a 2004−2012 over-
lap period. The top of lowest model layer is approximately
100 m.
The GEOS-Chem aerosol simulation includes sulfate-nitrate-

ammonium,29,30 primary31−33 and secondary carbonaceous
aerosols,34−36 mineral dust,37 and sea-salt.38 Aerosol optical
properties were determined from Mie calculations of log-
normal size distributions, growth factors and refractive indices,
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based on the Global Aerosol Data Set (GADS) and aircraft
measurements.39−41 We reduced by half the AOD to PM2.5
relationship for mineral dust to compensate for its overly
vigorous wet deposition in the simulation.41 Details of the
GEOS-5.2-driven simulation are described in Philip et al.,42 and
of the GEOS-5.7-driven simulation in Boys et al.43

AERONET. The Aerosol Robotic Network (AERONET) is a
globally distributed ground-based network of CIMEL sun
photometers14 that provide multiwavelength AOD measure-
ments. AERONET measurements apply the Beer−Lambert-
Bouger law to observed direct beam radiation to calculate
spectral AOD with a low uncertainty of <0.02,44 making it
invaluable for evaluation of both simulated and satellite-
retrieved AOD. We used level 2.0 of version 2 data.
Surface Monitors. We used surface monitor PM2.5 data

collected for the Global Burden of Disease (GBD).2 This data
set combines multisource, annually representative PM2.5 and
PM10 observations from GBD collaborators, targeted data
searches, official networks, literature searches, and the WHO
ambient air pollution in cities database. Observations were
collected for the years 2008−2013. PM10 observations, scaled
by nearest available PM2.5:PM10 ratios, were used in regions
without direct PM2.5 measurement as detailed by Brauer et al.2

A summary of the data sources used is given in Supporting
Information Table 1.

3. MATERIALS AND METHODS

Common Calibration and Definition of Error. We first
globally calibrated each AOD source using AERONET
observations. We translated daily AOD retrievals and simulated
values from 1998 to 2014 from their native resolution onto a
common 0.1° × 0.1° grid, area-weighting satellite retrievals and
linearly interpolating simulated values. Daily satellite AOD
retrievals were sampled coincidently to within 0.25° of each
AERONET location and binned according to Normalized
Difference Vegetation Index (NDVI). NDVI was used to
represent the effects of seasonally based changes in vegetation.
Ten percent of the data were withheld from each of 100
random draws. Reduced major axis linear regression
determined the line of best fit for the remaining data. Median
slope and offset of the retrieved or simulated AOD with
observed values were treated as local calibration.
Local calibrations were used to create a global surface for

application to the AOD sources, where each pixel over the
global was determined as the weighted average of all
AERONET site-specific calibrations. Weighting factors were
represented by the inverse product of Land Cover Similarity
(LCS) and distance squared. We defined LCS as

∑= | − |
=

LCS LT LTi j k
n

N

i j n k n, ,
1

, , ,

LT

(1)

where the LCS of a global pixel (i,j) with AERONET site (k)
was the sum of absolute differences between land cover type
percentages (LTi,j,n and LTk,n) for each land cover category (n)
as defined by the MODIS land cover product.45 Land cover
percentages were capped at a maximum of 50% and their
absolute difference given a minimum of 1%. LCS allowed
similar mixtures of land cover to be weighted more strongly.
Example weighting factors of four AERONET locations are
shown in Supporting Information Figure S1. The impact of
changing land type on weighting factor, often associated with

topographical changes, is visible as deviations from the smooth
variation of inverse squared distance.
Residual uncertainty in calibrated AOD was represented

by the normalized root-mean-square difference (NRMSD)
between coincidently sampled AOD at AERONET sites after
application of the global bias correction surface:

=
−
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AOD
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2 0.5

AERONET
(2)

Local NRMSD were globally extended using inverse squared
distance and LCS, following the approach used for the local
calibration factors.
We also calibrated simulated AOD with AERONET

measurements. Simulated fractional aerosol composition was
applied to each daily AERONET observation and unique
calibration terms determined seasonally for each component,
following van Donkelaar et al.27 Local calibration terms were
extended globally using the inverse squared distance and cross-
correlation weighted average of each AERONET site to each
global pixel. Calibrated, component-specific residual uncer-
tainty was represented by NRMSD and extended globally also
using inverse squared distance and cross-correlation.

CALIOP-Based Vertical Profile Adjustment. We applied
CALIOP aerosol extinction vertical profiles (CAL_LID_L2_05k-
mAPro-Prov-V3−01) to correct the GEOS-Chem simulation of
AOD to near-surface extinction. Vertical profile adjustments
were determined globally using CALIOP extinction profiles,
sampled coincidently in time and space with simulations over
the CALIOP v3.01 period of 2006−2011. CALIOP vertical
profiles were adjusted for consistent aerosol optical properties
with GEOS-Chem using the lidar equation.27 The effect of
optical property differences was generally small. Simulated
fractional aerosol composition was applied to the CALIOP
profiles, and local vertical profile adjustments determined for
each climatological month of each component as the ratio of
median CALIOP and simulated near-surface extinction to
AOD. A minimum AOD column of 0.01 and near-surface
extinction of 0.1 km−1 were required. Local adjustments were
spatially smoothed using a moving median over a 30° latitude
and 45° longitude window.

Estimation of PM2.5 from Satellite and Simulation. We
related daily calibrated AOD values from each source on a
0.1° grid to near surface PM2.5 concentrations using CALIOP-
adjusted daily simulated AOD to PM2.5 relationships. Filters
were applied to exclude AOD and PM2.5 outliers from each
source. Daily values differing from the local mean (within 1° × 1°)
by more than the local standard deviation were removed.
Values were removed where local standard deviations
exceeded twice the local mean. Values were also removed
where less than 25% of local retrievals were successful and
above zero. Monthly mean AOD and PM2.5 surfaces for each
source were calculated from these daily values and the same
filters applied to the monthly surfaces. PM2.5 was treated at 35%
relative humidity to match common standardized measurement
procedures.
Monthly mean values with less than 50% coverage within the

surrounding five degrees were removed. Missing AOD and
PM2.5 estimates within areas with more than 50% coverage were
approximated using the interpolated ratio with the same data
source during other years of the same month, or barring that,
the interpolated ratio with simulated values during the same
time period. Monthly AOD and PM2.5 values from all N sources
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were combined using a weighted average, weighted by the
product of the inverse residual AOD NRMSD, the inverse
absolute percent difference between calibrated and uncalibrated
AOD (ΔAODadj/AOD), and the local data density (Nobs), such
that for AOD:
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ΔAODadj,n and AODn were set to a minimum of 0.01. Nobs
was set to a maximum of 5 observations per month for the pur-
pose of weighting, even when more observations were included in
the calculation. Squaring Nobs penalizes sparse observation density.
Values exceeding three standard deviations of those within the
surrounding 1° × 1° were replaced via linear interpolation.
Similar weighting was used to combine the monthly PM2.5

estimates:
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Where available, spatial information from the 1 km MAIAC
AOD retrieval was then incorporated by applying the
climatology of its retrieved relative variation between 0.01°
and 0.1°. Where MAIAC was unavailable, monthly AOD and
PM2.5 were linearly interpolated onto a 0.01° grid.
Global Geographically Weighted Regression (GWR).

We predicted and accounted for the bias in the annual mean of
these geophysically based SAT PM2.5 estimates using GWR.46

GWR is a statistical technique that allows spatial variation
in the predictor coefficients of a linear regression-based
predictor-response relationship, making it possible to predict
using the spatial structure of both predictor variables and their
coefficients. We fitted our GWR model coefficients at 1° × 1°
intervals using PM2.5 measured with ground-based monitors
(GM), following the form:

β β β

−

= + + ×

(GM PM SAT PM )

DST SNAOC ED DU
2.5 2.5

1 2 3 (5)

where β1 to β3 represented spatially varying predictor
coefficients. ED is the log of the elevation difference between
the local elevation and the mean elevation within the simulation
grid cell, according to the 1′ × 1′ ETOPO1 Global Relief
Model available from the National Geophysical Data Center
(http://www.ngdc.noaa.gov/mgg/global/seltopo.html). DU is
the inverse distance to the nearest urban land surface, based
upon the 1′ resolution MODIS Land Cover Type Product
(MCD12Q1).45 Compositional concentrations for mineral dust
(DST) and the sum of sulfate, nitrate, ammonium and organic
carbon (SNAOC) were represented by simulated relative
contributions of each species applied to SAT PM2.5, following
Philip et al.,42 that is, by weighting the near-surface aerosol
concentration by the simulated compositional contribution of
each species. We interpolated all predictors onto a common
0.01° grid.
The weighting of each ground-based monitor to the local

GWR regression was based on the squared inverse distance
of the monitor to each GWR grid cell. The greater of 100 km
or the third nearest monitor distance was used for the mini-
mum distance to avoid overfitting. We scaled the weighting of

Figure 1. Mean aerosol optical depth (AOD) over land for 2001−2010, by data source. Retrieval algorithm name, where applicable, is given in the
lower left of each panel. The associated instrument is indicated in brackets. MODIS corresponds to the average of Aqua- and Terra-based retrievals.
The middle panel shows the combination of all data sources after calibrating with AERONET. Gray denotes missing data or water.
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PM10-based observations by half due to uncertainty associated
with these values. Ten additional GWR bias corrections were
performed for cross validation; each withheld ten percent of
sites randomly chosen from within each GBD47 defined region
(Supporting Information Figure S2).
We used gridded population estimates at 2.5′ × 2.5′

resolution from the Socioeconomic Data and Applications
Center48 for 2010 to further interpret our PM2.5 estimates.

4. RESULTS AND DISCUSSION

Figure 1 (top and bottom rows) shows mean AOD from each
data source for 2001−2010. A broad level of similarity is apparent
across all data sources, with the highest values occurring over
regions of dust, biomass burning and anthropogenic activity. Sam-
pling differences affect values in tropical biomass burning regions.
Figure 2 shows mean contributions of each AOD source to

the combined product. Aqua- and Terra-based MODIS

Figure 2. Mean contribution of each data source to the combined PM2.5 estimate from 2001 to 2010. Retrieval algorithm name, where applicable, is
given in the lower left of each panel. Instrument is indicated in brackets, with average weighting of valid retrievals below. Values in the bottom-left of
each panel indicate the decade mean weighting at locations with available data. MODIS corresponds to Terra-based retrievals only. Gray denotes
missing data or water. A version with linear color-scale is available as Supporting Information Figure S3.

Figure 3. AOD and PM2.5 for 2001−2010. The logarithmic PM2.5 scale (bottom) is directly proportional to the logarithmic AOD scale, obtained by
normalizing the global average of PM2.5 to that of AOD. Gray denotes water.
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retrievals were weighted separately, for a total of nine AOD
sources, although only Terra-based MODIS retrievals are
shown in this figure. An individual source of average quality
would therefore have a weighting of 1/9 (∼10%). All sources
demonstrated value, excelling under conditions best suited to
their individual strengths. The MAIAC and MISR retrievals
excelled under difficult surface conditions, such as mountainous
and arid regions. MODIS DB was used over broad desert
regions, such as the Sahara, and biomass burning regions of
South America and Africa. SeaWiFS DB was weighted less
heavily, and displayed some similarity to MODIS DB, but
reduced in part by less frequent sampling. DT was used in the
vegetatively rich regions of Central America, Central Africa, and
Southeast Asia. Simulated AOD was highly valuable in northern
regions, where seasonal snow-cover inhibit passive AOD
retrieval, and in tropical southeastern Asia, where cirrus
cloud-cover reduces satellite sampling. Combined AOD is
more consistent than individual AOD data sources at sites
with ground-based measurements of PM2.5 (r

2 = 0.32−0.39 vs
r2 = 0.45) and at sites that also include PM2.5 estimated from
PM10 (r

2 = 0.35−0.42 vs r2 = 0.49).
Figure 1 (middle) shows the combined 2001−2010 multi-

year mean AOD. The top panel of Figure 3 shows the same

data on a logarithmic scale proportional to the PM2.5 estimates
shown in the bottom panel. The two logarithmic color scales
differ by a factor of 52 μg/m3, equal to the global average
simulated ratio of PM2.5 to AOD. Relative differences in spatial
variation represent deviations from global mean conditions of
the aerosol vertical profile and optical properties. Source
regions, such as deserts and industrial areas, show greater PM2.5

values compared to AOD reflecting enhanced near-surface
aerosol concentrations. Northern regions tend to have less
surface PM2.5 compared to aerosol aloft.
Figure 4 shows the net impact of individual predictors on the

GWR bias correction to the annual mean PM2.5 estimates.
Urban Distance × Elevation Difference shows the largest
amount of spatial heterogeneity owing to predictor variation.
PM2.5 components are associated with large scale changes that
likely represent bias in the AOD to PM2.5 relationship rather
than bias in AOD since AOD was calibrated with AERONET.
Mineral Dust is regionally associated with both reductions and
enhancements, potentially tied to variability in the simulated
accuracy of wet deposition41 that may affect the accuracy of
simulated composition. Bias associated with other PM2.5

components shows more variation, including reductions over
parts of East Asia and Eastern Europe, and increases around

Figure 4. Net impact of individual predictors on the geographically weighted regression estimate of bias in satellite-derived PM2.5 for 2010. Gray
denotes water. Percentage impact is plotted in Supporting Information Figure S4.
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some cities especially in South America and western North
America.
Figure 5 (middle) shows the combined impact of all

predictors on the annual mean geophysically based satellite-
derived PM2.5 for 2010. Changes associated with mineral dust
remained prevalent, overlaid with regional changes associated
with other composition components. Fine scale variability
(Supporting Information Figure S5) is associated with
Elevation and Urban Distance. Agreement between the
GWR-Predicted and Observed bias was weaker when including
PM10-based values (R2 = 0.44) versus those sites directly
measuring PM2.5 (R

2 = 0.54). A slope of 0.6 suggests that the
net bias may be underestimated.
Figure 5 also shows comparisons of ground monitors with

initial, annual mean geophysically based satellite-derived PM2.5
(top) and GWR-adjusted satellite-derived PM2.5 (bottom).
Addition of the predicted bias significantly improves agreement
with both the entire in situ data set (R2 = 0.74 vs R2 = 0.58) and
with the direct PM2.5 observations (R2 = 0.85 vs R2 = 0.67).
Agreement of the GWR-adjusted estimates at cross valida-
tion sites was similar when including PM10-based monitors
(R2 = 0.73) and at the direct PM2.5 locations (R2 = 0.81),
suggesting the impact of overfitting is small. Comparison
between these annual mean values include any residual impact
of sampling. The weaker overall relationship with PM2.5

inferred from PM10 may suggest caution in the use of PM10
for PM2.5 exposure estimates, or alternatively the higher density
of PM10 monitors in more uncertain regions, such as India.
Table 1 gives mean population-weighted PM2.5 concentra-

tion for the socioeconomic-geographic regions of GBD. The
larger global population-weighted mean PM2.5 concentration
(32.6 μg/m3) compared with that at PM2.5 monitor locations
(25.1 μg/m3) highlights the need for additional monitoring.
Regional differences between the GWR-adjusted and prior
GBD2013 estimates are apparent, with a root-mean-square
difference of regional mean GWR-adjusted values at PM2.5-
monitor locations of 7.0 μg/m3 versus 12.8 μg/m3 for the
GBD2013 estimates. North America, Central Europe and
Eastern Europe have low levels of within-region uncertainty
compared to PM2.5 monitors (bias: −0.7 to 0.4 μg/m3,
variance: 2.1−5.7 μg/m3), benefiting from well-characterized
emission inventories that drive AOD to PM2.5 relationships as
well as numerous ground-based monitors for GWR adjustment.
Parts of Asia and Latin America, by contrast, have relatively
high levels of regional uncertainty (bias: up to 11.6 μg/m3,
variance: up to 33.9 μg/m3). This increased absolute
uncertainty results in part from the higher PM2.5 concentrations
in many Asian regions. Lower in situ monitor density may also
play a role, suggesting increased uncertainty in GWR-adjusted
values for sparsely observed regions.

Figure 5. Satellite-derived PM2.5 (top), predicted bias (middle), and adjusted satellite-derived PM2.5 (bottom) for 2010. In situ values are for the year
of observation of each monitor, with years between 2008 and 2013. Point locations correspond to individual monitors, with black dots representing
direct PM2.5 observations and gray dots representing PM2.5 approximated from PM10. Colored outlines of point locations provide observed value.
Gray space denotes water. The right column plots coincident annual mean in situ and satellite values. Annotations include the coefficient of variation
at all points and at cross-validation points (R2 = All points (CV points)), normal distribution of uncertainty (N(bias,variance)), line of best fit (y)
and number of comparison points (N). Black dots/text correspond to direct PM2.5 monitors alone. Gray dots and text additionally include PM2.5
estimated from PM10 monitors.
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According to the GWR-adjusted satellite-derived PM2.5
estimates, the global population-weighted annual average
PM2.5 concentration of 32.6 μg/m3 is three times higher than
the 10 μg/m3 WHO guideline, driven by high concentrations in
several Asian and African regions. Few regions have population-
weighted mean concentrations below the WHO guideline,
with only Australasia, the Caribbean, Tropical Latin America,
High Income North America, and Oceania below this level.
South and East Asia contain the highest population-weighted
PM2.5 concentrations (50.6 μg/m3 and 46.6 μg/m3, respec-
tively), influenced by both mineral dust and anthropogenic
emissions. West Sub-Saharan Africa also had high population-
weighted PM2.5 concentrations (39.5 μg/m3), due to the
combined effects of mineral dust and biomass burning.
Figure 6 shows the distribution of GWR-adjusted satellite-

derived PM2.5 concentrations for 2010 according to population
and population density for the six most populated GBD regions
and globally. Typical ambient concentrations in South Asia and
East Asia vary, from about 20−70 μg/m3. North Africa/Middle
East uniquely had its highest PM2.5 concentrations in its least
populated regions due to substantial mineral dust concen-
trations near the sparsely populated Sahara Desert. Average
PM2.5 concentrations in the least densely populated regions of
South Asia and East Asia exceeded those in the most densely
populated regions of North America. A small proportion of the

global population (13%) lived where concentrations are below
the 10 μg/m3 WHO guideline. Regionally, 52% of the High
Income North America population live below the WHO
guideline, compared to 1% or less of South Asia, East Asia, and
North Africa/Middle East.

Next Steps. Here we presented a globally applicable
method that brought together satellite retrievals, geophysically
driven simulations, and ground-based observations to improve
the representation of PM2.5 at spatial scales commensurate with
population density. Eight different satellite AOD products were
combined for broad global accuracy at 0.1° resolution.
Information at 0.01° was obtained from the MAIAC retrieval
and from the associations of PM2.5 enhancements with
topographic depressions. These multiple information sources
enabled predictive skill worldwide despite a dearth of ground-
based monitors outside High Income North America, Western
Europe, and recently, China. A more integrated ground-based
PM2.5 and AOD monitoring strategy, such as the Surface
PARTiculate mAtter Network (SPARTAN),49 would offer
value for independent evaluation of the AOD-to-PM2.5
relationship. Higher temporal availability of global PM2.5
monitors would allow better GWR representation of seasonally
driven bias, such as that associated with mineral dust and
biomass burning. Regions heavily influenced by mineral dust
present a challenge for satellite retrievals, simulation, and

Figure 6. Distribution of GWR-adjusted satellite-derived PM2.5 concentration for 2010 according to population and population density within the six
most populated GBD regions and globally. The bottom panel shows the cumulative distribution of regional, annual mean PM2.5.
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ground measurements. Future simulations should incorporate
improved dust emission schemes (e.g., Ridley et al.41) to reduce
uncertainty. Higher resolution simulations may also better
represent finer-scale features of the geophysically based AOD
to PM2.5 relationship. The approach presented here allows for
future evaluation and inclusion of numerous AOD retrievals,
such as from emerging high-resolution products (e.g., Visible
Infrared Radiometer Suite (VIIRS),50 3 km MODIS DT51), as
well as the inclusion of additional ground-based observations as
they become available. Alternative statistrical calibration
methods, such as a Bayesian Hierarchical Framework,52,53

may offer additional benefits.
The annual mean global GWR-adjusted PM2.5 estimates

at 0.01° × 0.01° are freely available as a public good from the
Dalhousie University Atmospheric Composition Analysis
Group Web site at: http://fizz.phys.dal.ca/~atmos/martin/
?page_id=140, or by contacting the authors.
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